Current Issue : January-March Volume : 2024 Issue Number : 1 Articles : 5 Articles
The global spread of multi-resistant pathogenic microorganisms has significantly complicated the treatment of chronic wounds. The development of novel drugs requires a substantial time investment. Hybrid materials such as nanoparticles stabilized by plant extracts are considered the best for creating efficient antiseptic substances. This paper is the first to discuss quantitative and qualitative analyses of the phytochemical constituents of the medicinal plant Artemisia terrae-albae, collected in Kazakhstan. The antimicrobial activity of the extracts, as well as of silver nanoparticles (AgNPs) stabilized by Artemisia terrae-albae extract, were evaluated. AgNPs were characterized by an average size of 82 nm or larger with a negative surface charge. TEM analysis of the obtained suspension showed a nonuniform structure of particles synthesized at a low concentration of ethyl acetate solvent in water. The SPR peak of AgNPs@Art aq. extract was detected at 420 nm, while any clear SPR peak was observed for AgNPs@Art ethylacetate extract. Diluted Artemisia terrae-albae extracts did not exhibit pronounced antimicrobial activity due to the poor solubility of compounds in water. Nevertheless, the AgNPs@Art aq. and AgNPs@Art EtAc. extracts possessed antimicrobial activity against the Pseudomonas aeruginosa ATCC 9027, Staphylococcus aureus ATCC 6538, Escherichia coli (ATCC 8739), and Candida albicans ATCC 10231 strains....
The purpose of the present study was to evaluate the synergistic effect of two important pharmacophores, coumarin and α-amino dimethyl phosphonate moieties, on antimicrobial activity against selected strains of multidrug-resistant nosocomial pathogenic bacteria. The previously developed enzyme-catalysed Kabachnik–Fields protocol allowed us to obtain the studied compounds with high yields which were free from metal impurities. The structure–activity relationship revealed that inhibitory activity is strongly related to the presence of the trifluoromethyl group (CF3−) in the coumarin scaffold. MIC and MBC studies carried out on six selected pathogenic bacterial strains (Gram-positive pathogenic Staphylococcus aureus (ATCC 23235) strain, as well as on Gram-negative Acinetobacter baumannii (ATCC 17978), Pseudomonas aeruginosa (ATCC 15442), Enterobacter cloacae (ATCC 49141), Porphyromonas gingivalis (ATCC 33277), and Treponema denticola (ATCC 35405)) have shown that tested compounds show a strong bactericidal effect at low concentrations. Among all agents investigated, five exhibit higher antimicrobial activity than those observed for commonly used antibiotics. It should be noted that all the compounds tested showed very high activity against S. aureus, which is the main source of nosocomial infections that cause numerous fatalities. Furthermore, we have shown that the studied coumarin-based α-aminophosphonates, depending on their structural characteristics, are non-selective and act efficiently against various Gram-positive and Gram-negative pathogens, which is of great importance for hospitalised patients....
The goal of the present research was to screen the antimicrobial activity of an ethanolic extract of Kitaibelia vitifolia against 30 multidrug-resistant (MDR) bacterial strains isolated from healthcare-associated infections. Minimum inhibitory concentrations (MICs) of the samples against the tested bacteria were determined using the microdilution method. MDR bacterial strains were characterized using standard biochemical tests and the commercial identification systems API 20 NE and API 20 E as: Klebsiella spp. (18 isolates—I); methicillin-resistant Staphylococcus aureus (MRSA)—3; Acinetobacter spp.—3; Pseudomonas aeruginosa—5; vancomycin-resistant Enterococcus (VRE)—1. The sensitivity of isolated bacterial strains was determined using the disc diffusion method against 25 commonly used antibiotics. The highest level of sensitivity to K. vitifolia extract was confirmed in 88.89% of Klebsiella spp. isolates, E. coli ATCC 25922, two strains of MRSA (1726, 1063), Acinetobacter spp. strain 1578, and VRE strain 30, like Enterococcus faecalis ATCC 29212 (MIC =< 2.44 μg/mL). The lowest sensitivity was exhibited by 75.00% of Acinetobacter spp. (strains 1577 and 6401), where the highest values for MICs were noted (1250 μg/mL). The results indicate that the extract of K. vitifolia could be a possible source for creating new, efficient, and effective natural medicines for combat against MDR strains of bacteria....
In recent years, the antimicrobial resistance in Escherichia coli has gradually developed into a global problem. These resistant bacteria could be transmitted to humans through animal feces in the environment or direct contact with pets, leading to a problem in bacterial treatment for humans and animals. Now, the antibiotic resistance of oral and intestinal microbiota from dog origins remains unclear in China. Therefore, this study first analyzed the current colistin resistance of oral and intestinal microbiota from dog origins in mainland China. A total of 536 samples were collected from dogs in mainland China and, respectively, cultured on the SS and MacConkey agar plate containing colistin (4 μg/mL) to obtain bacteria, and the antibiotic-resistance phenotype of Escherichia coli was investigated for nine antibiotics. Results showed that a total of 2259 colistin-resistant bacteria were isolated from samples and identified, and among them, the isolated rate of Escherichia coli (34.01%, 769/2259) was relatively higher than that of other bacteria. Subsequently, it was found that the resistance of these Escherichia coli was very severe by exploring its resistance to different antibiotics, particularly to three common antibiotics in a clinic which were ceftriaxone, ampicillin and trimethoprim/sulfamethoxazole, with the resistance rates of 60.60% (466/769), 57.22% (440/769), and 53.06% (408/769), respectively. Moreover, the simultaneous resistance of Escherichia coli to one or more antibiotics was determined, and 69.96% (538/769) strains have defined the resistance to both two or more antibiotics, and even 13 of Escherichia coli strains that were resistant to all nine antibiotics, indicating that the Escherichia coli from dog origins has severe antibiotic resistance in the clinic. In conclusion, this study guided the use of antibiotics and could draw attention to antibiotic resistance in veterinary clinical treatment for animals in the future....
Cystic fibrosis (CF) is a common life-shortening genetic disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Lungs of CF patients are often colonized or infected with microorganisms requiring frequent courses of antibiotics. Antibiotic-resistant bacterial infections have been a growing concern in CF patients. Chronic bacterial infections and concomitant airway inflammation damage the lungs, ultimately leading to respiratory failure. Several clinical trials have demonstrated that high-dose ibuprofen reduces the rate of pulmonary function decline in CF patients. This beneficial effect has been attributed to the anti-inflammatory properties of ibuprofen. Previously, we have confirmed that high-dose ibuprofen demonstrates antimicrobial activity against P. aeruginosa both in vitro and in vivo. However, no study has examined the antimicrobial effect of combining ibuprofen with standard-of-care antimicrobials. Here, we evaluated the possible synergistic activity of combinations of common nonsteroidal anti-inflammatory drugs (NSAIDs), namely, ibuprofen, naproxen, and aspirin, with commonly used antibiotics for CF patients. The drug combinations were screened against different CF clinical isolates. Antibiotics that demonstrated increased efficacy in the presence of ibuprofen were further tested for potential synergistic effects between these NSAIDS and antimicrobials. Finally, a survival analysis of a P. aeruginosa murine infection model was used to demonstrate the efficacy of the most potent combination identified in in vitro screening. Our results suggest that combinations of ibuprofen with commonly used antibiotics demonstrate synergistic antimicrobial activity against drug-resistant, clinical bacterial strains in vitro. The efficacy of the combination of ceftazidime and ibuprofen against resistant P. aeruginosa was demonstrated in an in vivo pneumonia model....
Loading....